

ADVANCED GCE MATHEMATICS

4724/01

Core Mathematics 4

WEDNESDAY 21 MAY 2008

Afternoon

Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages)

List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

© OCR 2008 [R/102/2711]

OCR is an exempt Charity

[Turn over

1 (a) Simplify
$$\frac{(2x^2 - 7x - 4)(x + 1)}{(3x^2 + x - 2)(x - 4)}$$
. [2]

- (b) Find the quotient and remainder when $x^3 + 2x^2 6x 5$ is divided by $x^2 + 4x + 1$. [4]
- 2 Find the exact value of $\int_1^e x^4 \ln x \, dx$. [5]
- 3 The equation of a curve is $x^2y xy^2 = 2$.

(i) Show that
$$\frac{dy}{dx} = \frac{y^2 - 2xy}{x^2 - 2xy}$$
. [3]

(ii) (a) Show that, if
$$\frac{dy}{dx} = 0$$
, then $y = 2x$. [2]

- (b) Hence find the coordinates of the point on the curve where the tangent is parallel to the x-axis.
- 4 Relative to an origin O, the points A and B have position vectors $3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$ respectively.
 - (i) Find a vector equation of the line passing through A and B. [2]
 - (ii) Find the position vector of the point P on AB such that OP is perpendicular to AB. [5]

5 (i) Show that
$$\sqrt{\frac{1-x}{1+x}} \approx 1 - x + \frac{1}{2}x^2$$
, for $|x| < 1$. [5]

(ii) By taking
$$x = \frac{2}{7}$$
, show that $\sqrt{5} \approx \frac{111}{49}$. [3]

6 Two lines have equations

$$\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \quad \text{and} \quad \mathbf{r} = \begin{pmatrix} 12 \\ 0 \\ 5 \end{pmatrix} + s \begin{pmatrix} 1 \\ -4 \\ -2 \end{pmatrix}.$$

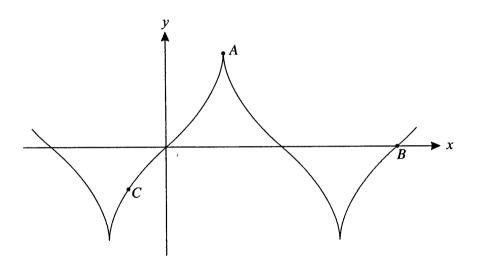
- (i) Show that the lines intersect. [4]
- (ii) Find the angle between the lines. [4]
- 7 (i) Show that, if $y = \csc x$, then $\frac{dy}{dx}$ can be expressed as $-\csc x \cot x$. [3]
 - (ii) Solve the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\sin x \tan x \cot t,$$

given that $x = \frac{1}{6}\pi$ when $t = \frac{1}{2}\pi$. [5]

© OCR 2008 4724/01 Jun08

8 (i) Given that $\frac{2t}{(t+1)^2}$ can be expressed in the form $\frac{A}{t+1} + \frac{B}{(t+1)^2}$, find the values of the constants A and B.


(ii) Show that the substitution
$$t = \sqrt{2x - 1}$$
 transforms
$$\int \frac{1}{x + \sqrt{2x - 1}} dx$$
 to
$$\int \frac{2t}{(t + 1)^2} dt$$
. [4]

(iii) Hence find the exact value of
$$\int_{1}^{5} \frac{1}{x + \sqrt{2x - 1}} dx.$$
 [4]

9 The parametric equations of a curve are

$$x = 2\theta + \sin 2\theta$$
, $y = 4 \sin \theta$,

and part of its graph is shown below.

(i) Find the value of θ at A and the value of θ at B. [3]

(ii) Show that
$$\frac{dy}{dx} = \sec \theta$$
. [5]

(iii) At the point C on the curve, the gradient is 2. Find the coordinates of C, giving your answer in an exact form. [3]

© OCR 2008 4724/01 Jun08

4724 Core Mathematics 4

1	(a)	$2x^2 - 7x - 4 = (2x+1)(x-4)$ or		
		$3x^2 + x - 2 = (3x - 2)(x + 1)$	B 1	
		$\frac{2x+1}{3x-2}$ as final answer; this answer only	B1	Do not ISW
		3x-2		201001511
	(b)	For correct leading term <i>x</i> in quotient	2 B1	Identity method
	(6)	For evidence of correct division process	M1	M1: $x^3 + 2x^2 - 6x - 5 = Q(x^2 + 4x + 1) + R$
		Quotient = $x - 2$	A1	M1: $Q = ax + b$ or $x + b$, $R = cx + d$ & ≥ 2 ops
				[N.B. If $Q = x + b$, this \Rightarrow 1 of the 2 ops]
		Remainder = $x - 3$	A1	A2: $a = 1, b = -2, c = 1, d = -3$ SR: <u>B</u> 1 for two
		du.	4	
2		Parts with correct split of $u = \ln x$, $\frac{dv}{dx} = x^4$	*M1	obtaining result $f(x) + /- \int g(x) dx$
		$\frac{x^5}{5}\ln x - \int \frac{x^5}{5} \cdot \frac{1}{x} (\mathrm{d}x)$	A1	
		$\frac{x^5}{5} \ln x - \frac{x^5}{25}$	A1	
		Correct method with the limits	dep*1	M1 Decimals acceptable here
		$\frac{4e^5}{25} + \frac{1}{25}$ ISW (Not '+c')	A1	Accept equiv fracts; like terms amalgamated
		25 25	5	
3	(i)	$\frac{d}{dx}(x^2y) = x^2 \frac{dy}{dx} + 2xy \text{ or } \frac{d}{dx}(xy^2) = 2xy \frac{dy}{dx} + y^2$	*B1	
		Attempt to solve their differentiated equation for $\frac{dy}{dx}$	dep*!	M1
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 - 2xy}{x^2 - 2xy} \text{ only}$	A1	WWW AG Must have intermediate line &
			3	could imply "=0" on 1st line
	(ii)(s	a)Attempt to solve only $y^2 - 2xy = 0$ & derive $y = 2x$	B1	AG Any effort at solving $x^2 - 2xy = 0 \rightarrow B0$
	(11)(2	Clear indication why $y = 0$ is not acceptable	B1	Substituting $y = 2x \rightarrow B0$, B0
			2	
	(b)	Attempt to solve $y = 2x$ simult with $x^2y - xy^2 = 2$	M1	
		Produce $-2x^3 = 2$ or $y^3 = -8$	A1	AEF
		(-1, -2) or $x = -1, y = -2$ only	A1	
			3	

4	(i)	For (either point) + t (difference between vectors) $\mathbf{r} = (3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \text{ or } \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) + t(-2\mathbf{i} + \mathbf{j} + \mathbf{k} \text{ or } 2\mathbf{i} - \mathbf{j} - 1)$	M1 k) A1	
			2	
	(ii)		I1 N o*M1	N.B.This *M1 is dep on M1 being earned in (i)
		Obtain $t = -\frac{1}{6}$ or $\frac{1}{6}$ or $-\frac{5}{6}$ or $\frac{5}{6}$		
		Subst their t into their equation of AB	1	
		Obtain $\frac{1}{6}(16i + 13j + 19k)$ AEF A1	A	Accept decimals if clear
		5		
5	(i)	$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2$ ignoring x^3 etc	B2	SR Allow B1 for $1 - \frac{1}{2}x + kx^2$, $k \neq -\frac{1}{8}$ or 0
		$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2$ ignoring x^3 etc	B2	SR Allow B1 for $1 - \frac{1}{2}x + kx^2$, $k \neq \frac{3}{8}$ or 0
		Product = $1 - x + \frac{1}{2}x^2$ ignoring x^3 etc	B1	AG ; with (at least) 1 intermediate step (cf x^2)
			5	
	(ii)	$\sqrt{\frac{5}{9}}$ or $\frac{\sqrt{5}}{3}$ seen	B1	
		$\frac{37}{49}$ or $1 - \frac{2}{7} + \frac{1}{2} \left(\frac{2}{7}\right)^2$ seen	B1	
		$\frac{\sqrt{5}}{3} \approx \frac{37}{49} \Rightarrow \sqrt{5} \approx \frac{111}{49}$	B1	AG
			3	
6	(i)	Produce at least 2 of the 3 relevant equations in <i>t</i> and <i>s</i> Solve for <i>t</i> and <i>s</i>	M1 M1	
		(t, s) = (4, -3) AEF	*A	1
		Subst $(4, -3)$ into suitable equation(s) & show consistence	y dep	o*A1 Either into "3 rd " eqn or into all 3 coordinates. N.B. Intersection coords not asked for
			4	N.B. Intersection coords not asked for
	(ii)	Method for finding magnitude of any vector	*M	11 Expect $\sqrt{29}$ and $\sqrt{21}$
		Method for finding scalar product of any 2 vectors	*M	11 Expect -18
		Using $\cos \theta = \frac{\mathbf{a.b}}{ \mathbf{a} \mathbf{b} }$ AEF for the correct 2 vectors	dep	5*M1 Should be $-\frac{18}{\sqrt{29}\sqrt{21}}$
		137 (136.8359) or 43.2(43.164)	A1 4	2.39 (2.388236) or 0.753(0.75335) rads

7	(i)	Correct (calc) method for dealing with $\frac{1}{\sin x}$ or $(\sin x)^{-1}$	M1
---	-----	--	----

Obtain
$$-\frac{\cos x}{\sin^2 x}$$
 or $-(\sin x)^{-2}\cos x$

A1

Show manipulation to
$$-\csc x \cot x$$
 (or vice-versa)

WWW AG with ≥ 1 line intermed working **A1** 3

(ii) Separate variables,
$$\int (-)\frac{1}{\sin x \tan x} dx = \int \cot t dt$$

M1 or
$$\int \frac{1}{\sin x \tan x} dx = \int (-) \cot t dt$$

Style: For the M1 to be awarded, dx and dt must appear on correct sides or there must be sign on both sides

$$\int -\csc x \cot x \, dx = \csc x \quad (+c)$$

A1 or
$$\int \csc x \cot x \, dx = -\csc x$$

$$\int \cot t \, dt = \ln \sin t \text{ or } \ln |\sin t|$$

B1 or
$$\int -\cot t \, dt = -\ln \sin t \text{ or } -\ln |\sin t|$$

Subst
$$(t,x) = \left(\frac{1}{2}\pi, \frac{1}{6}\pi\right)$$
 into their equation containing 'c' M1 and

and attempt to find 'c'

$$\csc x = \ln \sin t + 2 \text{ or } \ln \left| \sin t \right| + 2$$

A1

WWW ISW; cosec
$$\frac{\pi}{6}$$
 to be changed to 2

5

8 (i)
$$A(t+1)+B=2t$$

M1 Beware: correct values for A and/or B can be ... **A1**

... obtained from a wrong identity

A1 Alt method: subst suitable values into given... ...expressions

3

A1

(ii) Attempt to connect dx and dt
$$dx = t dt$$
 s.o.i. AEF

M1 But not just dx = dt. As **AG**, look carefully.

$$x + \sqrt{2x-1} \rightarrow \frac{t^2+1}{2} + t = \frac{(t+1)^2}{2}$$
 s.o.i.

B1 Any wrong working invalidates

$$\int \frac{2t}{(t+1)^2} dt$$

AG WWW **A1**

The 'dt' must be present

(iii) $\int \frac{1}{t+1} dt = \ln(t+1)$

4

B1 Or parts
$$u = 2t$$
, $dv = (t+1)^{-2}$ or subst $u = t+1$

$$\int \frac{1}{(t+1)^2} \, \mathrm{d}t = -\frac{1}{t+1}$$

B1

Attempt to change limits (expect 1 & 3) and use
$$f(t)$$

or re-substitute and use 1 and 5 on g(x)**M1**

$$\ln 4 - \frac{1}{2}$$

A1 AEF (like terms amalgamated); if A0 A0 in (i),

then final A0

4

9 (i)	$A: \theta = \frac{1}{2}\pi$ (accept 90°)	B1
	$B: \theta = 2\pi$ (accept 360°)	B2 SR If B0 awarded for point <i>B</i> , allow B1 SR for
		any angle s.t. $\sin \theta = 0$
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}}$	M1 or $\frac{dy}{d\theta} \cdot \frac{d\theta}{dx}$ Must be used, not just quoted
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2 + 2\cos 2\theta$	B1
	$2 + 2 \cos 2\theta = 4 \cos^2 \theta$ with ≥ 1 line intermed work	*B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\cos\theta}{2 + 2\cos 2\theta} \qquad \text{s.o.i.}$	A1 This & previous line are interchangeable
	$= \sec \theta$	dep*A1 WWW AG 5

(iii) E	equating $\sec \theta$ to 2 and producing at least one value of θ	M1	degrees or radians
()	$(x=)-\frac{2}{3}\pi-\frac{\sqrt{3}}{2}$	A1	'Exact' form required
()	$y =)-2\sqrt{3}$	A1 3	'Exact' form required